时间序列直方图#

此示例演示如何以一种可以潜在地揭示隐藏的子结构和不立即明显的模式的方式有效地可视化大量时间序列,并以视觉上吸引人的方式显示它们。

在此示例中,我们生成多个正弦“信号”序列,这些序列被埋在大量随机游走“噪声/背景”序列之下。对于标准差为 σ 的无偏高斯随机游走,n 步后与原点的 RMS 偏差为 σ*sqrt(n)。因此,为了保持正弦波在与随机游走相同的尺度上可见,我们将幅度按随机游走 RMS 进行缩放。此外,我们还引入一个小的随机偏移 phi 以左右移动正弦波,以及一些加性随机噪声以向上/向下移动各个数据点,使信号更“真实”(您不应期望完美的正弦波出现在您的数据中)。

第一个图显示了通过使用 plt.plot 和较小的 alpha 值将多个时间序列叠加在一起的典型可视化方式。第二个和第三个图显示了如何通过使用 np.histogram2dplt.pcolormesh 将数据重新解释为 2D 直方图,以及数据点之间的可选插值。

import time

import matplotlib.pyplot as plt
import numpy as np

fig, axes = plt.subplots(nrows=3, figsize=(6, 8), layout='constrained')

# Fix random state for reproducibility
np.random.seed(19680801)
# Make some data; a 1D random walk + small fraction of sine waves
num_series = 1000
num_points = 100
SNR = 0.10  # Signal to Noise Ratio
x = np.linspace(0, 4 * np.pi, num_points)
# Generate unbiased Gaussian random walks
Y = np.cumsum(np.random.randn(num_series, num_points), axis=-1)
# Generate sinusoidal signals
num_signal = round(SNR * num_series)
phi = (np.pi / 8) * np.random.randn(num_signal, 1)  # small random offset
Y[-num_signal:] = (
    np.sqrt(np.arange(num_points))  # random walk RMS scaling factor
    * (np.sin(x - phi)
       + 0.05 * np.random.randn(num_signal, num_points))  # small random noise
)


# Plot series using `plot` and a small value of `alpha`. With this view it is
# very difficult to observe the sinusoidal behavior because of how many
# overlapping series there are. It also takes a bit of time to run because so
# many individual artists need to be generated.
tic = time.time()
axes[0].plot(x, Y.T, color="C0", alpha=0.1)
toc = time.time()
axes[0].set_title("Line plot with alpha")
print(f"{toc-tic:.3f} sec. elapsed")


# Now we will convert the multiple time series into a histogram. Not only will
# the hidden signal be more visible, but it is also a much quicker procedure.
tic = time.time()
# Linearly interpolate between the points in each time series
num_fine = 800
x_fine = np.linspace(x.min(), x.max(), num_fine)
y_fine = np.concatenate([np.interp(x_fine, x, y_row) for y_row in Y])
x_fine = np.broadcast_to(x_fine, (num_series, num_fine)).ravel()


# Plot (x, y) points in 2d histogram with log colorscale
# It is pretty evident that there is some kind of structure under the noise
# You can tune vmax to make signal more visible
cmap = plt.colormaps["plasma"]
cmap = cmap.with_extremes(bad=cmap(0))
h, xedges, yedges = np.histogram2d(x_fine, y_fine, bins=[400, 100])
pcm = axes[1].pcolormesh(xedges, yedges, h.T, cmap=cmap,
                         norm="log", vmax=1.5e2, rasterized=True)
fig.colorbar(pcm, ax=axes[1], label="# points", pad=0)
axes[1].set_title("2d histogram and log color scale")

# Same data but on linear color scale
pcm = axes[2].pcolormesh(xedges, yedges, h.T, cmap=cmap,
                         vmax=1.5e2, rasterized=True)
fig.colorbar(pcm, ax=axes[2], label="# points", pad=0)
axes[2].set_title("2d histogram and linear color scale")

toc = time.time()
print(f"{toc-tic:.3f} sec. elapsed")
plt.show()
Line plot with alpha, 2d histogram and log color scale, 2d histogram and linear color scale
0.424 sec. elapsed
0.106 sec. elapsed

标签:绘图类型:histogram2d 绘图类型:pcolormesh 目的:讲故事 样式:颜色 组件:颜色图

参考

此示例中显示了以下函数、方法、类和模块的使用

脚本的总运行时间:(0 分钟 3.888 秒)

由 Sphinx-Gallery 生成的图库