注意
转到末尾下载完整的示例代码。
带有线条、日期和文本的时间线#
如何使用 Matplotlib 发布日期创建简单时间线。
可以使用日期和文本的集合创建时间线。在此示例中,我们将展示如何使用 Matplotlib 最近版本的日期创建简单时间线。首先,我们将从 GitHub 中提取数据。
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates
try:
# Try to fetch a list of Matplotlib releases and their dates
# from https://api.github.com/repos/matplotlib/matplotlib/releases
import json
import urllib.request
url = 'https://api.github.com/repos/matplotlib/matplotlib/releases'
url += '?per_page=100'
data = json.loads(urllib.request.urlopen(url, timeout=1).read().decode())
dates = []
releases = []
for item in data:
if 'rc' not in item['tag_name'] and 'b' not in item['tag_name']:
dates.append(item['published_at'].split("T")[0])
releases.append(item['tag_name'].lstrip("v"))
except Exception:
# In case the above fails, e.g. because of missing internet connection
# use the following lists as fallback.
releases = ['2.2.4', '3.0.3', '3.0.2', '3.0.1', '3.0.0', '2.2.3',
'2.2.2', '2.2.1', '2.2.0', '2.1.2', '2.1.1', '2.1.0',
'2.0.2', '2.0.1', '2.0.0', '1.5.3', '1.5.2', '1.5.1',
'1.5.0', '1.4.3', '1.4.2', '1.4.1', '1.4.0']
dates = ['2019-02-26', '2019-02-26', '2018-11-10', '2018-11-10',
'2018-09-18', '2018-08-10', '2018-03-17', '2018-03-16',
'2018-03-06', '2018-01-18', '2017-12-10', '2017-10-07',
'2017-05-10', '2017-05-02', '2017-01-17', '2016-09-09',
'2016-07-03', '2016-01-10', '2015-10-29', '2015-02-16',
'2014-10-26', '2014-10-18', '2014-08-26']
dates = [datetime.strptime(d, "%Y-%m-%d") for d in dates] # Convert strs to dates.
releases = [tuple(release.split('.')) for release in releases] # Split by component.
dates, releases = zip(*sorted(zip(dates, releases))) # Sort by increasing date.
接下来,我们将创建一个茎图,其中级别有一些变化,以区分甚至相邻的事件。我们在基线上添加标记,以视觉上强调时间线的一维性质。
对于每个事件,我们通过annotate
添加文本标签,该标签以点为单位从事件线尖端偏移。
请注意,Matplotlib 将自动绘制日期时间输入。
# Choose some nice levels: alternate meso releases between top and bottom, and
# progressively shorten the stems for micro releases.
levels = []
macro_meso_releases = sorted({release[:2] for release in releases})
for release in releases:
macro_meso = release[:2]
micro = int(release[2])
h = 1 + 0.8 * (5 - micro)
level = h if macro_meso_releases.index(macro_meso) % 2 == 0 else -h
levels.append(level)
def is_feature(release):
"""Return whether a version (split into components) is a feature release."""
return release[-1] == '0'
# The figure and the axes.
fig, ax = plt.subplots(figsize=(8.8, 4), layout="constrained")
ax.set(title="Matplotlib release dates")
# The vertical stems.
ax.vlines(dates, 0, levels,
color=[("tab:red", 1 if is_feature(release) else .5) for release in releases])
# The baseline.
ax.axhline(0, c="black")
# The markers on the baseline.
meso_dates = [date for date, release in zip(dates, releases) if is_feature(release)]
micro_dates = [date for date, release in zip(dates, releases)
if not is_feature(release)]
ax.plot(micro_dates, np.zeros_like(micro_dates), "ko", mfc="white")
ax.plot(meso_dates, np.zeros_like(meso_dates), "ko", mfc="tab:red")
# Annotate the lines.
for date, level, release in zip(dates, levels, releases):
version_str = '.'.join(release)
ax.annotate(version_str, xy=(date, level),
xytext=(-3, np.sign(level)*3), textcoords="offset points",
verticalalignment="bottom" if level > 0 else "top",
weight="bold" if is_feature(release) else "normal",
bbox=dict(boxstyle='square', pad=0, lw=0, fc=(1, 1, 1, 0.7)))
ax.xaxis.set(major_locator=mdates.YearLocator(),
major_formatter=mdates.DateFormatter("%Y"))
# Remove the y-axis and some spines.
ax.yaxis.set_visible(False)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.margins(y=0.1)
plt.show()
参考
本示例中显示了以下函数、方法、类和模块的使用
脚本的总运行时间:(0 分 2.393 秒)