注意
转到结尾下载完整的示例代码。
BboxImage 演示#
BboxImage
可用于根据边界框定位图像。此演示显示如何在 text.Text
的边界框内显示图像,以及如何手动创建图像的边界框。
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
from matplotlib.transforms import Bbox, TransformedBbox
fig, (ax1, ax2) = plt.subplots(ncols=2)
# ----------------------------
# Create a BboxImage with Text
# ----------------------------
txt = ax1.text(0.5, 0.5, "test", size=30, ha="center", color="w")
ax1.add_artist(
BboxImage(txt.get_window_extent, data=np.arange(256).reshape((1, -1))))
# ------------------------------------
# Create a BboxImage for each colormap
# ------------------------------------
# List of all colormaps; skip reversed colormaps.
cmap_names = sorted(m for m in plt.colormaps if not m.endswith("_r"))
ncol = 2
nrow = len(cmap_names) // ncol + 1
xpad_fraction = 0.3
dx = 1 / (ncol + xpad_fraction * (ncol - 1))
ypad_fraction = 0.3
dy = 1 / (nrow + ypad_fraction * (nrow - 1))
for i, cmap_name in enumerate(cmap_names):
ix, iy = divmod(i, nrow)
bbox0 = Bbox.from_bounds(ix*dx*(1+xpad_fraction),
1 - iy*dy*(1+ypad_fraction) - dy,
dx, dy)
bbox = TransformedBbox(bbox0, ax2.transAxes)
ax2.add_artist(
BboxImage(bbox, cmap=cmap_name, data=np.arange(256).reshape((1, -1))))
plt.show()
参考
此示例显示了以下函数、方法、类和模块的使用
脚本的总运行时间:(0 分钟 1.359 秒)