图像非均匀性#

这说明了 NonUniformImage 类。它不能通过 Axes 方法获得,但可以像此处所示轻松添加到 Axes 实例中。

NonUniformImage class, nearest, nearest, bilinear, bilinear
import matplotlib.pyplot as plt
import numpy as np

from matplotlib import cm
from matplotlib.image import NonUniformImage

interp = 'nearest'

# Linear x array for cell centers:
x = np.linspace(-4, 4, 9)

# Highly nonlinear x array:
x2 = x**3

y = np.linspace(-4, 4, 9)

z = np.sqrt(x[np.newaxis, :]**2 + y[:, np.newaxis]**2)

fig, axs = plt.subplots(nrows=2, ncols=2, layout='constrained')
fig.suptitle('NonUniformImage class', fontsize='large')
ax = axs[0, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
                     cmap=cm.Purples)
im.set_data(x, y, z)
ax.add_image(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)

ax = axs[0, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
                     cmap=cm.Purples)
im.set_data(x2, y, z)
ax.add_image(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)

interp = 'bilinear'

ax = axs[1, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
                     cmap=cm.Purples)
im.set_data(x, y, z)
ax.add_image(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)

ax = axs[1, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
                     cmap=cm.Purples)
im.set_data(x2, y, z)
ax.add_image(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)

plt.show()

脚本的总运行时间:(0 分钟 3.241 秒)

由 Sphinx-Gallery 生成的图库